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Classical Lattice-Gas Models of Quasicrystals
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One of the fundamental problems of quasicrystals is to understand their
occurrence in microscopic models of interacting particles. We review here recent
attempts to construct stable quasicrystalline phases. In particular, we compare
two recently constructed classical lattice-gas models with translation-invariant
interactions and without periodic ground-state configurations. The models are
based on nonperiodic tilings of the plane by square-like tiles. In the first model,
all interactions can be minimized simultaneously. The second model is
frustrated; its nonperiodic ground state can arise only by the minimization of
the energy of competing interactions. We put forward some hypotheses con-
cerning stabilities of nonperiodic ground states. In particular, we introduce two
criteria, the so-called strict boundary conditions, and prove their equivalence to
the zero-temperature stability of ground states against small perturbations of
potentials of interacting particles. We discuss the relevance of these conditions
for the low-temperature stability, i.e., for the existence of thermodynamically
stable nonperiodic equilibrium states.

KEY WORDS: Quasicrystals; nonperiodic tilings; classical lattice-gas models;
nonperiodic ground states; nonperiodic Gibbs states; stability; frustration.

1. INTRODUCTION

Since the discovery of quasicrystals in 1984 by D. Schechtmann, I. Blech,
D. Gratias, and J. W. Cahn, (1) one of the fundamental problems in condensed
matter physics is to understand their occurrence in microscopic models
of interacting particles. The equilibrium behavior of a system of many
interacting particles results from the competition between its energy E and
entropy S, i.e., the minimization of its free energy F=E&TS, where T is
the temperature. At zero temperature this reduces to the minimization of
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the energy. Configurations of particles which minimize the energy density
of the system are called ground-state configurations. Here we will discuss
models of interacting particles without periodic ground-state configura-
tions. Then we would like to pass to low but nonzero temperature and
controlling entropy (due to thermal fluctuations of particles) to show the
existence of thermodynamically stable nonperiodic equilibrium states. This
is an outline of a general program. In this paper,we review some partial
results, prove the equivalence of two stability conditions, and put forward
some open problems.

Let us mention that besides this ``local rule'' scenario there is another
one. In random tiling models, in which there exist both periodic and non-
periodic ground states, quasicrystals are stabilized by the entropy.(2)

In the following we will discuss classical-lattice gas (toy) models of
quasicrystals. More precisely, every site of the square lattice can be occupied
by one of several different particles. The particles interact through finite-
range, translation-invariant potentials. Our models have only nonperiodic
ground-state configurations which belong to one local isomorphism class.
It means that locally they cannot be distinguished one from another. Every
local pattern of particles present in one ground-state configuration appears
in any other within a bounded distance. We then say that our models have
unique nonperiodic ground states.

In Section 2, we compare two recently constructed lattice-gas models
with unique nonperiodic ground states. They are based on nonperiodic
tilings of the plane by square-like tiles such that interactions between par-
ticles correspond to nearest-neighbor and next-nearest-neighbor matching
rules. The first model is nonfrustrated. All interactions can be minimized at
the same time. The second one is a model of a frustrated quasicrystal. It is
also based on tilings but in addition it has nonzero chemical potentials for
certain types of particles. The unique nonperiodic ground state of this
model cannont be stabilized by matching rules alone, competing interac-
tions are necessary. In Section 3, we discuss the stability of nonperiodic
ground states against small perturbations of interactions between particles.
In particular, we present two criteria, the so-called strict boundary condi-
tions (their equivalence is proven in the Appendix), which are equivalent to
the zero-temperature stability. In Section 4, we discuss the relevance of
these conditions for the low-temperature stability of nonperiodic ground
states, review some partial results and put forward some open problems.

2. LATTICE-GAS MODELS OF QUASICRYSTALS

Let us begin with tilings. We have at our disposal a finite number of
polygons called prototiles. Using an infinite number of their copies we
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would like to tile the whole plane without overlaps and empty spaces.
In Fig. 1 we present Robinsons tiles.(3, 4) These are squares with some
notches and dents on their sides representing matching rules which tell us
which tiles can be put next one to another. Robinson showed that his tiles
allow tilings of the plane and that every such tiling is nonperiodic��there
is no nonzero shift of the plane which takes a tiling to itself. Later on (but
still before the discovery of quasicrystals) Penrose constructed his famous
tiles(5) which now form the canonical example of quasicrystalline structures.

Let us observe that if we tile the plane with the Robinson tiles, then
the centers of tiles form the square lattice Z2. Therefore, every Robinson
tiling can be represented by a function assigning particles to lattice sites,
i.e., an element of [1,..., 56]Z2

(we consider all rotations and reflexions of
the Robinson tiles as different tiles).

Now we present two recently constructed classical lattice-gas models
of interacting particles which do not have periodic ground-state configura-
tions (see (1) for a formal definition of a ground-state configuration).

The first model is based on the Robinson tilings.(6�16) Every site of the
Z2 lattice can be occupied by one of 56 different particles which correspond
to tiles. Two nearest-neighbor or next-nearest-neighbor particles which do
not match as tiles contribute a positive energy, say 1, otherwise the energy
is zero. We chose chemical potentials of all particles to be zero. Such a
model does not have any periodic ground-state configurations. It follows
from the fact that every periodic configuration would have a positive
density of pairs of particles with the positive energy (corresponding to tiles
that do not match). There is a one-to-one correspondence between ground-
state configurations without interfaces and perfect tilings of the plane.

Fig. 1. Robinson's tiles.
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Obviously, all interactions can be minimized simultaneously��in a perfect
tiling all matching rules are satisfied. Such models are called nonfrustrated.

Every ground-state configuration of the above model has a very precise
structure. For every n�1, a restriction of a ground-state configuration to
a certain sublattice 2nZ2 is a periodic configuration with the period 2n+1.
The relative orientations of particles on these sublattices are shown in
Fig. 2 (hooks represent different orientations of the particle corresponding
to the tile at the lower left of Fig. 1).

Our second model(17) is based on tiles shown in Fig. 3. These are
squares with markings represented by vertical, horizontal, and diagonal
lines. The first family of matching rules says that these lines cannot be
broken on common sides of nearest-neighbor tiles and at common corners
of next-nearest-neighbor tiles. These rules correspond to nearest-neighbor
and next-nearest-neighbor lattice-gas interactions as it was described
before. The second family of matching rules allows only certain patterns of
five vertically or horizontally successive tiles. Namely, among five vertically
successive tiles there must be at least one arm with the horizontal marking
or a cross and there cannot be two such tiles at a distance smaller than
four. Analogously, among five horizontally successive tiles there must be at
least one arm with the vertical marking or a cross and there cannot be two
such tiles at a distance smaller than four. This is translated into a five-body
interaction by simply assigning a positive energy to all forbidden patterns;
allowed five-particle patterns have zero energy. Finally, we have a rule
which forces every arm with diagonal markings to have a cross as one of
its nearest neighbors. It gives rise to a three-body interaction.

Ground-state configurations of this model are two-dimensional ana-
logs of one-dimensional, ``most homogeneous,'' nonperiodic ground-state

Fig. 2. Robinson's nonperiodic ground-state configuration.
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Fig. 3. Tiles of the frustrated model.

configurations of infinite-range, convex, repulsive interactions in models with
devil's staircases.(17�20) More precisely, in our ground-state configurations,
horizontal and vertical lines cannot be broken, they extend to infinity
creating a two-dimensional grid shown in Fig. 4. Distances between lines
follow the rule of the most-homogeneous configurations. It means that for
every ground-state configuration there exists a sequence of natural numbers
di such that the distance between two i th neighboring horizontal or vertical
lines can be either di or di+1. Now, to fix ground-state configurations with
a given density of particles and therefore a unique sequence di , we intro-
duce a negative chemical potential for crosses (particles located at intersec-
tion of a horizontal and a vertical line, corresponding to a tile shown in the
second row of Fig. 3) and a positive chemical potential for arms (particles
located along vertical or horizontal lines, corresponding to tiles shown in
the last two rows of Fig. 3).

Our model is frustrated. One cannot minimize simultaneously all inter-
actions��in every ground-state configuration there are crosses with a
negative chemical potential, arms with a positive chemical potential and
other particles with the zero chemical potential. Frustration is much more
severe for any choice of chemical potentials which fix the density of particles
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Fig. 4. A nonperiodic ground-state configuration of the frustrated model.

to be an irrational number. In this case one cannot minimize the energy of
interacting particles by minimizing their energy in a finite volume and all
its translates, no matter how big is the volume (the first model with such
a property was constructed in ref. 14). Moreover, there does not exist any
nonfrustrated finite-range interaction having our ground states as its
unique ground state. Let us note that the canonical example of frustration,
the antiferromagnetic Ising model on the triangular lattice, does not have
such problems��frustrated two-spin interactions are grouped into triangles
and the equivalent Hamiltonian expressed in terms of three-body triangle
interactions is not frustrated.

Our model is a microscopic model of a quasicrystal which cannot be
stabilized by matching rules alone; competing interactions are necessary.

Tiling models with interactions were already investigated by several
authors. Jeong and Steinhardt(21�23) constructed Penrose tilings without
imposing matching rules. Two Penrose rhombi allow many tilings (some
even periodic). Jeong and Steinhardt proved that perfect Penrose tilings are
chosen from this random tiling ensemble by maximizing the density of
some cluster of tiles. Such a cluster represents atoms with low-energy inter-
actions. Minimization of the energy corresponds to maximization of the
cluster density and therefore forces quasiperiodicity. This is an outstanding
result. Let us emphasize, however, that Penrose tilings can be obtained by
(maybe nonphysical) matching rules. This is definitely not the case in our
model. Situation analogous to ours was investigated by Ga� hler and Jeong.(24)

They studied octagonal Amman-Beenker tilings which do not allow for
perfect matching rules. They assigned negative energies to certain clusters
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of tiles and provided some numerical evidence that ground-state configu-
rations of such interactions form a single isomorhism class consisted of
octagonal Amman-Beenker tilings.

In all our models, although all ground-state configurations are non-
periodic, they all belong to one isomorphism class. It means that a uniformly
defined frequency of any finite arrangement of particles is the same
in all ground-state configurations. We then say that the model has a
unique nonperiodic ground state (there is a unique translation-invariant
probability measure supported by ground-state configurations which is
therefore inevitably the zero-temperature limit of translation-invariant
Gibbs states��equilibrium states). More precisely, to find the frequency of
a finite arrangement of particles in a given configuration, we first count the
number of times it appears in a box of size l which is centered at the origin
of the lattice, divide it by l d, and then take the limit l � �. If the con-
vergence is uniform with respect to the position of the boxes, then we say
that the configuration has a uniformly defined frequency of this arrange-
ment. We will show that stability of nonperiodic ground-state configura-
tions is intimately connected with the rate of this convergence.

Let us emphasize again that in our models the frequency of any finite
particle arrangement is the same in all ground-state configurations. Yet, it
is not true that all ground-state configurations are lattice translations of a
single nonperiodic ground-state configuration. Such a situation is present
in all tiling models of quasicrystals; for example in the Penrose tilings,
where instead of ground-state configurations we have perfect tilings.

3. ZERO-TEMPERATURE STABILITY CONDITIONS

We begin by describing more formally classical lattice-gas models,
introducing necessary definitions and notation.

A classical lattice-gas model is a system in which every site of a lattice
Zd can be occupied by one of n different particles. An infinite-lattice con-
figuration is an assignment of particles to lattice sites, i.e., an element of
0=[1,..., n]Zd

. If X # 0 and A/Zd, then we denote by X(A) a restriction
of X to A. Particles at lattice sites a and b interact through a two-body,
translation-invariant potential 8(a&b), which is a function on [1,..., n][a, b]

��the space of all possible assignments of particles to lattice sites a and b,
and we assume that 8 is of finite range, that is 8(a&b)=0 if dist(a, b)>r
for some r>0. The Hamiltonian in a bounded region 4 can be then written
as H4=�a, b # 4 8(a&b).

Y is a local excitation of X, YtX, Y, X # 0, if there exists a bounded
4/Zd such that X=Y outside 4.
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For YtX, the relative Hamiltonian is defined by

H(Y, X )= :
[a, b] & 4{<

(8(a&b)(Y )&8(a&b)(X ))

X # 0 is a ground-state configuration of H if

H(Y, X )�0 for any YtX (1)

That is, we cannot lower the energy of a ground-state configuration by
changing it locally.

The energy density e(X ) of a configuration X is

e(X )=lim inf
4 � Z d

H4(X )
|4|

where |4| is the number of lattice sites in 4. It can be shown that any
ground-state configuration has the minimal energy density. It means that
local conditions present in the definition of a ground-state configuration
force the global minimization of the energy density.

We will introduce now two conditions which are equivalent to the
zero-temperature stability of nonperiodic ground states. They generalize
the so-called Peierls condition(26�28) for models without periodic ground-
state configurations.

For clarity of presentation we assume that our models are two-dimen-
sional. The important assumption is that our models are nonfrustrated;
they have a unique ground state supported by ground-state configurations
for which all interactions attain simultaneously their minima (we choose
them to be equal to zero). Therefore, if Y is not a ground-state configura-
tion, it contains pairs of particles (at least one) with nonminimal energies
(we choose them to be equal to 1), the so-called broken bonds. Denote by
B(Y ) the number of broken bonds in Y. Thus H(Y, X )=B(Y ) if YtX
and X is a ground-state configuration.

Condition 1. The strict boundary condition for local ground-state
configurations.

Let X(A) be a configuration on a bounded region A of the lattice such
that all interactions between particles in X(A) attain their minimal values.
X(A) is called a local ground-state configuration; it might not be extend-
able to any infinite lattice ground-state configuration. Let |A| be the area
of A (the number of sites in A) and P(A) the length of the boundary of A
(the length of the path enclosing A on the dual lattice).
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We assume that our models have unique ground states. In particular,
every ground-state configuration in their supports has well defined densities
of all local particle arrangements. Let ar be a local arrangement of particles
and |ar its density in the unique ground state (which is equal to the density
in every ground-state configuration in its support).

We say that a model satisfies the strict boundary condition for local
ground-state configurations and an arrangement ar if the number of
appearances of ar in each local ground-state configuration X(A), nar(X(A)),
satisfies the following inequality:

|nar(X(A))&|ar |A| |<CarP(A) (2)

where Car>0 is a constant which depends only on the arrangement ar.
Let us notice that Condition 1 can be also applied for tilings without

any reference to lattice-gas models. We simply replace the requirement that
all interactions between particles in X(A) attain their minimal values by the
one stating that all matching rules are satisfied in A. For example, it was
proven in ref. 29 that Penrose matching rules satisfy the strict boundary
condition for all patterns in bounded regions of perfect infinite tilings.
It is not known if this is also true for local tilings��regions without any
matching rule violations which cannot be extended to any infinite tiling;
compare Open Problem 3 in Section 4.

Condition 2. The strict boundary condition for local excitations.(16)

Let X be a ground-state configuration and Y a local excitation of X;
YtX. Let nar(Y, X ) denote the difference of the number of appearances of
an arrangement ar of particles in Y and the number of its appearances in X.

We say that a model satisfies the strict boundary condition for local
excitations and an arrangement ar if there exists a Car>0 such that for
every ground-state configuration X and every YtX

|nar(Y, X )|<CarB(Y ) (3)

We will prove the equivalence of these two conditions in the
Appendix.

The following theorem��the equivalence of Condition 2 and the zero-
temperature stability of ground states��was proven in ref. 16.

Theorem 1. A unique ground state of a finite-range, nonfrustrated
Hamiltonian is stable against small perturbations of chemical potentials
and two-body interactions of range smaller than r if and only if the strict
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boundary condition for local excitations is satisfied for particles and pairs
of particles at a distance smaller than r.

One can easily generalize this theorem for any perturbation (infinite-
range, many-body).

Our first lattice-gas model does not satisfy the strict boundary condi-
tions for particles and therefore is unstable with respect to arbitrarily small
perturbations of chemical potentials.(8) In ref. 16, there was constructed a
classical lattice-gas model (based on modified Robinson's tilings) with
translation-invariant, finite-range interactions, whose unique nonperiodic
ground state satisfies the strict boundary conditions for particles and pairs
of particles and therefore is stable against small perturbations of chemical
potentials and two-body interactions. It means that there is an open set in
a space of two-body interactions without periodic ground-state configura-
tions. This constitutes the first generic counterexample to the so-called
crystal problem.

The frustrated model discussed is Section 2 satisfies the strict bound-
ary conditions for all local arrangements of particles. However, it is not
stable; frustration being the reason of the instability. The ground-state
density of particles changes continuously as a function of their chemical
potentials (compare ref. 8). It is a novel feature; such a situation cannot
happen in systems with periodic ground-state configurations. Continuous
changes of stoichiometry have been observed in real quasicrystals.

4. LOW-TEMPERATURE EQUILIBRIUM STATES;
PARTIAL RESULTS AND HYPOTHESES

Now we would like to show that nonperiodic order present in our
lattice models survive at nonzero temperatures. Low-temperature behavior
of models of quasicrystals based on the Penrose tilings was investigated in
refs. 30�34. In positive temperatures, equilibrium behavior of a system of
many interacting particles can be described by a grand-canonical ensemble.
An infinite-volume limit of this ensemble is called an equilibrium state or
a (translation-invariant) Gibbs state. Our goal is then to construct a non-
periodic Gibbs state for models without periodic ground states.

Open Problem 1. To construct a translation-invariant, finite-range
interaction without periodic ground-state configurations and with a non-
periodic Gibbs state.

In principle we have to control the entropy such that it does not
destroy the non-periodicity of the unique ground state, forced by the
minimization of the energy. More precisely, let X # 0 be a nonperiodic
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ground-state configuration of one of our models, 4 a finite subset of Zd

and \X
4 a finite volume Gibbs state:

\X
4(Y )=(1�ZX

4 ) exp(&H(Y$, X )�T ) (4)

for every Y # 04 , where Y$tX, Y$=Y on 4 and Y$=X on Zd&4 and

ZX
4= :

Y # 04

exp(&H(Y$, X )�T ) (5)

We would like to prove that,

\X
4([Y : Y(0){X(0)]<=(T ) (6)

where =(T ) � 0 uniformly in 4 as T � 0. Then we would pass to the ther-
modynamic limit, 4 � Zd, constructing in this way a nonperiodic Gibbs
state, \x, which would satisfy (6) for every Y # 0 and therefore be a small
perturbation of the ground-state configuration X. At the same time we
would prove the existence of infinitely many extremal Gibbs states, trans-
lates of \X. Our models were so far two-dimensional. There is a hypothesis
stating that in two-dimensional classical lattice-gas models with finite-range
interactions, there is always a finite number of extremal Gibbs states.(28, 38)

However, it is supported mainly by lack of a counterexample and negative
results in special families of models, like instability of an interface in the
two-dimensional ferromagnetic Ising model(39, 40) and finiteness of the
number of a certain type of Gibbs states in general ferromagnetic models.(41)

One of the problems dealing with two-dimensional nonperiodic models is
their nonregularity. We say that a lattice model is regular if the excitation
energy increases with the support of the excitation. Let X be a ground-state
configuration. We say that X is regular when, if card(a # Zd : Yn(a){X(a);
YntX ) � �, then H(Yn , X ) � �.

Open Problem 2. To construct a two-dimensional regular lattice-
gas model with a unique nonperiodic ground state.

Now we pass to three-dimensional versions of our models. In addition
to interactions in the plane, we introduce a ferromagnetic interaction along
the axis perpendicular to the plane such that two vertically-neighboring
particles interact with the zero energy if they are of the same type;
otherwise the energy is positive, say 1. Such three-dimensional stacked
models are obviously regular. Their ground-state configurations are layered
two-dimensional ground-state configurations which are translation-invariant
in the third direction. Now the main goal is to construct a model which would
satisfy the strict boundary condition for all finite arrangements of particles.
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Open Problem 3. To construct a nonfrustrated lattice model with
a unique nonperiodic ground state which satisfies the strict boundary con-
dition for all finite arrangements of particles.

One can formulate an analogous problem for tilings. We would like to
find a tiling satisfying Condition 1, where instead of interactions between
particles we have matching rules.

The strict boundary conditions imply, as we discussed in Chapter 3,
the stability of ground states with respect to small perturbations of inter-
actions. Now let us pass to small but nonzero temperatures. Consider a
region of a two-dimensional lattice with a local ground-state configuration
on it and bounded by a line of broken bonds. Condition 1 tells us that a
cluster expansion of the free energy of low-energy excitations is the same,
up to boundary terms, for all local ground-state configurations. In this way
excitations can be thought of as small perturbations of interactions.(25) This
means that the strict boundary condition should in principle guarantee the
low-temperature stability of ground states and therefore the existence of
nonperiodic Gibbs states. One may consider this as an attempt to generalize
the Pirogov�Sinai theory(26�28) to systems without periodic ground states
and therefore not satisfying the standard Peierls condition. The work in
this direction is in progress.

Low-temperature behavior of a lattice-gas model based on modified
Robinson's tilings was investigated in ref. 12. It was proven that there exists
a sequence of temperatures, Tn , such that if T<Tn , then there exists a
Gibbs state with the period at least 2n. Although nonperiodic Gibbs states
were not ruled out in this model, we conjecture that the sequence converges
to the zero temperature, giving rise to a period doubling of Gibbs states.

Finally, let us say few words about systems with interactions which are
not of finite range.

Nonperiodic long-range order can occur at nonzero temperatures for
slowly decaying (summable) interactions in arbitrary dimensions.(35, 36)

Recently a nonperiodic Gibbs state was constructed for twicely-stacked
three-dimensional models with exponentially decaying interaction along
one axis and the nearest-neighbor ferromagnetic interaction along two
other axes.(37)

APPENDIX

For clarity of presentation, we assume that interactions are nearest-
neighbor only and ar is a pair of particles at a distance D.
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Condition 1 Implies Condition 2

Proof by Contraposition. Fix C>0 and assume that Condition 2
is not satisfied. Hence, for every N there exists a local excitation, YNtX,
of a ground-state configuration X, such that |nar(YN , X )|>NCB(YN).
Assume that nar(YN , X )>NCB(YN); the case nar(YN , X )< &NCB(YN)
can be treated in an analogous way. Let B=[a : YN(a){X(a)]. Now we
will use the fact that X has a uniformly defined frequency of any finite
arrangement of particles. It means, in particular, that there exist nij=
(ni , nj) # Z2, 1�i, j�k such that X({nij

B)=X(B) and {nij
B are pairwise

disjoint for different i and j. Therefore, we can excite X on every {nij
B in

the same way as on B, creating a local excitation Y$NtX. Let A be a set
of lattice sites inside a square of size L containing �1�i, j�k ({nij

B) and
such that all interactions of particles in Y$N(A) attain their minimal values.
We choose k such that 4L<k2B(YN)=B(Y$N). It follows that P(A)<
6B(Y$N)+4L<7B(Y$N), where 6 comes from the worst case of an isolated
broken bond and the boundary of A enclosing two nearest-neighbor lattice
sites. Now, either

|nar(X(A))&|ar |A| |>C(7B(Y$N))>CP(A) (7)

so Condition 1 is not satisfied or

|nar(X(A))&|ar |A| |�C(7B(Y$N)) (8)

In the second case we have

nar(Y$N(A))&|ar |A|>NCB(Y$N)&C(7B(Y$N))&8B(Y$N)

>C(7B(Y$N))>CP(A) (9)

if

N>14+8�C (10)

Condition 2 Implies Condition 1

Proof by Contraposition. Fix C>0 and assume first that Condition 1
is not satisfied for ground-state configurations. Hence, for every N there
exists a bounded A/Z2 and a ground-state configuration X such that
|nar(X(A))&|ar |A| |>NCP(A). Assume now that nar(X(A))&|ar |A|>
NCP(A); the other case can be treated in an analogous way. Now we will
show that there must exist an a # Z2 such that nar(X({aA))&|ar |A|�0,
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where {a A is a translation of A by a. Let m be a number of translates of
A which contain the support of the arrangement ar, m�|A| and if N is suf-
ficiently big, then it follows from our assumption that m{0. If nar(X({aA))
>|ar |A| for every a # Z2, then |ar=lim4 � Z2 1�(m|4| ) �a # 4 nar(X({aA))
>|ar , which is a contradiction.

Now put X({aA) on A and X outside A and construct YtX.
Obviously, B(Y )�P(A) so

nar(Y, X )<&(NC&D) B(Y )< &CB(Y ) (11)

if

N>1+D�C (12)

Now assume that there exists a bounded A/Z2 and Y(A) which is
not necessarily a piece of a ground-state configuration but a local ground-
state configuration (all interactions between particles in Y(A) attain their
minimum values) such that

nar(Y(A))&|ar |A|>NCP(A) (13)

Put now a ground-state configuration X outside A and construct YtX.
Then either

nar(X(A))&|ar |A|>NCP(A)�2 (14)

and then we follow the first part of the proof to conclude that Condition 2
is not satisfied, or else

nar(Y, X )>(NC�2&D) B(Y )>CB(Y ) (15)

if

N>2+2D�C (16)
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